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Abstract

A nonlinear optimal control method is developed for magnetostrictive actuators used to actively attenuate
plate vibration. Significant improvements in vibration control can be achieved when the magnetostrictive
actuators are driven at moderate to high field levels. This results in nonlinearity and hysteresis which cannot be
effectively compensated using linear control theory. This issue is addressed by introducing a homogenized energy
model that accounts for nonlinear, hysteretic constitutive behavior into the control design. Numerical examples
illustrate significant improvements in vibration attenuation when the nonlinear control method is implemented.
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1. Introduction

Smart materials offer several advantages over conventional actuation systems such as high energy density,
compactness, and broadband capability which has provided numerous novel devices and adaptive structures.
One of the major challenges associated with implementing these materials is determining how to compensate
for nonlinear and hysteretic constitutive behavior. Nonlinear control laws are often needed at moderate to
high drive levels to meet increasingly stringent performance requirements in applications such as atomic force
microscopy, morphing aircraft structures, high speed milling, and precision optics.
A significant amount of research in developing smart material devices and adaptive structures has focused on

determining robust control design. Many works assume linear material behavior [3, 5, 18, 19] which works well
in low to moderate drive regions. In moderate to high drive regimes, however, inherent hysteresis can create a
phase lag between the input field and the actuation response. This can destabilize a system if the control law
is not robust. To address this issue, several techniques have been proposed such as inverse compensators [16],
neural network controllers [2], and Preisach models [10].
In this paper, a model-based nonlinear optimal control method is developed for smart material structures.

Although this method can be applied to a variety of smart material systems, the control design is demonstrated
on an elastic plate structure that uses nonlinear magnetostrictive actuators to actively dampen vibration. This
work is an extension of a previous model [20] for controlling beam dynamics that used a domain wall constitutive
model [13]. The current control design is extended to two-dimensional plate structures and uses a homogenized
free energy model [22] to predict magnetostrictive constitutive behavior. The domain wall model is effective
in modeling symmetric loop behavior, but does not guarantee biased minor loop closure typically observed in
materials with negligible thermal relaxation and rate dependent hysteresis. Although the domain wall model
can be modified to include closure of minor loop hysteresis, it requires a priori knowledge of the turning points
which precludes use in feedback control since the turning points are not typically known in advance. Minor
loop closure can be obtained using Preisach models, but these models typically require a large number of
unphysical parameters to accurately predict minor hysteresis. The homogenized free energy model addresses
closure of minor hysteresis loops by incorporating certain physical parameters at multiple length scales to predict
macroscopic constitutive behavior.
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The development of the optimal control method is presented as follows. Section 2 briefly describes the
homogenized free energy model. The magnetically actuated plate structure is developed in Section 3. In
Section 4, the optimal control problem is discussed. First the linear optimal control problem is summarized
to motivate the need for nonlinear control at moderate to high drive levels. Nonlinear optimal control is then
shown to compensate for hysteresis.

2. Homogenized free energy model

A one-dimensional magnetostrictive constitutive model can be used to model the actuator device. The
typical magnetostrictive transducer employed in the structural control problem is described in detail by Hall
and Flatau [11]. The homogenized energy model assumes linear stress-strain behavior and nonlinear, hysteretic
field-magnetization behavior. Details regarding the model development are give in [22] and only a summary
of the constitutive model is presented here. The model is based on a Gibbs energy relation at the lattice or
mesoscopic length scale. Local magnetic moments are assumed to be either aligned or diametrically opposed to
the magnetic field. The model is extended to the macroscopic length scale through a stochastic homogenization
technique.
The following constitutive law is used in developing the control law,

σ(t) = Y Mε(t)− a1 [M(H +HI ;Hc, ξ)]
2
(t) (1)

[M(H +HI ;Hc, ξ)] (t) =

∫ ∞

0

∫ ∞

−∞

ν1(Hc)ν2(HI)
[
M (H +HI ;Hc, ξ)

]
(t)dHIdHc (2)

where σ(t) is uniaxial stress, ε(t) is the elastic strain, Y M is the elastic modulus at constant magnetization, a1
is the magnetostrictive coefficient, and M is the magnetization. In (2), M is the local magnetization, H is the
applied field, HI is the interaction field, Hc is the coercive field and ξ denotes the initial distribution of magnetic
variants. The interaction field represents local material inhomogeneities. The probability density functions of
the coercive field and local field interactions are given by ν1(Hc) and ν2(HI). The change in stress on the
Terfenol actuators is restricted to small plate vibration therefore, magnetomechanical coupling is neglected in
(2).
The local magnetization M is given by,

M(H +HI ;Hc, ξ) = χm(H +HI) +MRδ(H +HI ;Hc, ξ) (3)

where δ = 1 if the local magnetization variant MR is in the positive direction and δ = −1 if oriented in the
negative direction. The magnetic susceptibility is defined by χm.
The stochastic homogenization technique is used to construct a macroscopic constitutive model that ac-

counts for a myriad of local material inhomogeneities such as intergranular residual stress, mismatches in grain
orientation, and impurities. As detailed in [22], the coercive field and interaction densities are taken to be

ν1(Hc)ν2(HI) = c1c2e
−[ln(Hc/Hc)/2c]

2

e−H2
i /2b2 (4)

whereHc is the average coercive field, c quantifies the coercive field variability, b is the variance of the interaction
field, and c1 and c2 are scaling parameters. The proposed densities give reasonable estimation of major and
minor hysteresis. They are implemented to reduce parameter estimation. Model comparison to experimental
results can be found in [22].
The local magnetization MR given in (3) will switch when magnetic variants diametrically opposed to the

effective field (He = H + HI) reach the coercive field. The switching behavior is modeled by introducing a
semi-infinite set of magnetic variants that correspond to the distribution of effective fields and coercive fields.
Details regarding the numerical implementation of the switching behavior and the numerical integration of (2)
are provided in [23]. The constitutive response predicted by the homogenized free energy model is illustrated
in Figure 1.
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Figure 1: (a) Macroscopic magnetization M versus magnetic field H computed using (2), and (b) microstrain µε versus
magnetic field H computed from (1) under zero external stress.

3. Structural model

The structural model consists of a thin plate coupled with Terfenol transducers placed along the fixed edges
of the plate. Eight transducers are oriented in four pairs where each pair is connected by a moment arm that
is perpendicular to the plate. Diametrically out-of-phase currents applied to each actuator couple generate a
moment on the plate. This system is based on a previous experimental arrangement for assessing vibration
control [7].

3.1 Plate with nonlinear actuators

The thin plate structure can by modeled using classical plate theory [24]. Deformation is assumed to be
small which allows the equation of motion describing transverse plate displacement w to decouple from in-plane
displacements. Since the control problem is concerned with attenuating vibration transverse to the plate, the
dynamic equation for w is only given.
The strong form of the equation of motion can be determined from force and moment balances,

ρ
∂2w

∂t2
−
∂2Mint

x

∂x2
−
∂2Mint

y

∂y2
=
∂2Mmag

x

∂x2
+
∂2Mmag

y

∂y2
(5)

where ρ denotes the density of the plate andMint
x andMint

y include the internal elastic and damping moment

components in the x and y directions, respectively. The in-plane moment componentMint
xy is zero in the present

case since the plate is isotropic and no twisting moments are applied. The external moments generated by the
Terfenol transducers are represented by Mmag

x and Mmag
y in the x and y directions, respectively. A detailed

description of the equations describing the moment-displacement relations are given in [21]. Spatial variations
in density, moment of inertia and compliance near the Terfenol transducers and connecting moment arms are
assumed to be negligible.
Boundary conditions are specified to determine the transverse displacement in (5). The plate is clamped

along the fixed edges [x, 0] and [0, y] and free along [`x, y] and [x, `y] where the plate length and width are given
by `x and `y, respectively.
The external moment generated by the Terfenol actuators is given by,

Mmag(t, x, y) = −KM [M
(i)2
1 (t)−M

(i)2
2 (t)]χrod(x, y) (6)
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where KM = a1AmagE
M (h/2 + `r) and M

(i)
1 (t) and M

(i)
2 (t) are the magnetization for each of the four (i=1

. . . 4) top and bottom actuator pairs, respectively. Here Amag is the cross-section of the Terfenol rod, h is the
plate thickness, and `r is the length of the moment arm. The characteristic function χrod is equal to one in
regions where the moment arm is attached to the plate and zero otherwise. The moment is applied in the x
direction along the fixed edge [0, y] and in the y direction along [x, 0]. Since the actuator strain is quadratic, a

nonzero moment requires a biasing magnetic field Hbias. The time varying component of the control input H̃(t)

is opposite in sign on each actuator pair. The total magnetic field input is H(t) = H̃(t) +Hbias. This reduces
the number of control inputs from eight to four.
The equation of motion given by (5) can be rewritten in the weak form for numerically implementation and

is given by (7)

∫

Ω

(
ρ
∂2w

∂t2
Φ−Mint

x

∂2Φ

∂x2
−Mint

y

∂2Φ

∂y2

)
dω =

∫

Ω

(
Mmag

x

∂2Φ

∂x2
+Mmag

y

∂2Φ

∂y2

)
dω (7)

where Φ ∈ H2
0 (x, y).

3.2 Approximation method

The plate geometry is approximated using cubic B-splines to determine the optimal control input. Cubic
Hermites could also be used but they require approximately twice the number of unknown coefficients. Details
describing the attributes of cubic B-splines as well as comparisons to cubic Hermites are given in [21]. The cubic
B-splines are defined over the plate geometry, Ω = [0, `x]× [0, `y]. The plate is discretized over the points given

by xm = mhx and ym = nhy with hx =
`x

Nx
, hy =

`y

Ny
and m = 0, ..., Nx and n = 0, ..., Ny. The cubic spline

product space is defined by,

Φ(x, y) = φ(x)φ(y) (8)

The approximate solution to (7) is subsequently given by

w(t, x, y) =

Nω∑

k=1

wk(t)Φk(x, y) (9)

where Nω = (Nx + 1)(Ny + 1) and wk(t) are the displacements determined from the weak form of the model.
An ODE model is obtained by rewriting the weak form of the model as a set of first order differential

equations

ẏ(t) = Ay(t) + [B(u)](t)

y(0) = y0 .
(10)

where y(t) = [w1(t), · · · , wNω
(t), ẇ1(t), · · · , ẇNω

(t)]. The system matrix A contains the mass, stiffness and
damping relations of the plate, whereas the matrix B(u) contains the nonlinear and hysteretic magnetostictive
behavior. Details regarding the relations between the system matrices and the cubic B-splines are given in [20].
It should also be noted that the variable u is typically used in the control literature as the input. This variable
is equivalent to the magnetic field H(t) on the Terfenol transducer, but u will be used in subsequent discussions
to be consistent with the control literature.

3.3 System parameters

Physical parameters employed in the control design are summarized in Table 1. The Terfenol material
parameters are within the range obtained for model fits to an experimental transducer [6]. The plate modulus
is typical for aluminum. The center location of the four actuator pairs was (0.105, 0.2), (0.105, 0.3), (0.15, 0.105)
and (0.25, 0.105) where the coordinate origin was located at the bottom left corner of the plate. The moment
arm is assumed to be rigid with length `r = 2.54 cm and square cross section area, Ar = 1 cm

2. The cross-
section area is used to determine the region over which the moment is applied. Plate dynamics were sufficiently

4



resolved by choosing Nx = Ny = 4 in the frequency range considered. The dimension of the state vector y was
then 50× 1 due to the inclusion of both displacement and velocity components.

Table 1: Parameters for the plate and Terfenol transducer.

Plate Terfenol Transducer

Ep = 4.1× 10
10 N/m2 a1 = 0.006 N/A

2

ρp = 2700 kg/m
3 c1 = c2 = 6.1× 10

−5 m/A

cp = 2.5× 10
5 Ns/m2 Hc = 3.3× 10

3 A/m

`x = 0.4 m c = 0.4

`y = 0.6 m b = 1.5× 104 A/m

γ = 0.18 Ns/m2 Ms = 1.3236× 10
5 A/m

h = 0.0016 m Amag = 0.0064 m
2

Y M = 7.0× 1010 N/m2

4. Control methodology

The optimal control problem is first summarized to elucidate the technique used in developing the nonlinear
control design [4, 14, 15, 17]. The general form of the finite dimensional control system under consideration is

ẏ(t) = f(y(t), u(t), t)

y(t0) = y0
(11)

where the states are y(t) ∈ lR2Nω and controls u(t) ∈ lRp where p = 4 for the case of four actuator pairs driven
diametrically out-of-phase. The model could have also been developed by letting p = 8, but as previously
mentioned in Section 3.1, a simplification is made to reduce model complexity.
A cost functional is utilized to obtain the optimal control input,

J(u) =
1

2
yT (tf )Πfy(tf ) +

∫ tf

t0

[
H(y, u, t)− λT (t)ẏ

]
dt (12)

where the positive definite matrix Πf penalizes large terminal values of the state, H(y, u, t) is the Hamiltonian,

and λ(t) ∈ lR2Nω is a set of Lagrange multipliers.
The Hamiltonian is,

H(y, λ, u, t) = L(y, u, t) + λT f(y, u, t)

=
1

2

[
yT (t)Qy(t) + uT (t)Ru(t)

]
+ λT f(y, u, t)

(13)

where the Lagrangian L includes the penalities on the states and inputs through the semi-definite maxtrix Q
and the positive definite matrix R.
The cost functional employed in (12) has been modified so that the optimization problem originally con-

strained by (11) is now unconstrained by utilizing Lagrange multipliers (for details see [4, 14, 15]). The optimal
input is found by minimizing J .
The optimal control problem requires solving the two point boundary value problem governed by (11) and

the following adjoint or Lagrange multiplier condition,

λ̇ = −
∂H

∂y

λ(tf ) = Πfy(tf ).

(14)

The optimal control is determined from the stationary condition,
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∂H

∂u
= 0 (15)

which results in the control relation

u∗(t) = −R−1 ∂f
T

∂u
λ(t). (16)

4.1 Linear optimal control

It has been experimentally shown that a nearly linear relation exists between input current to the solenoid and
strain output by the Terfenol transducer when the time varying input is small. In this situation, an approximate
model can be attained through linearization about some biased input field. In the present model, a biased field of
twice the coercive field is applied to the Terfenol rod. The magnetic susceptibility and remanent magnetization
are constant under small changes in the input field. These values are determined from the constitutive law by
applying a small oscillating field with bias 2Hc. This ensures a self-consistent linear operator B

B = −2KMMr(2Hc)χm(2Hc)~b (17)

where Mr(2Hc) is the biased magnetization at 2Hc, χm(2Hc) is the magnetic susceptibility at 2Hc, u(t) is the

magnetic field input, and ~b represents the location and direction of applied moments through integration of the
cubic B-spline functions.
With this approximation, the corresponding first-order system is

ẏ(t) = Ay(t) +Bu(t)

y(0) = y0 .
(18)

The state constraint in (18) and adjoint condition in (14) yields the optimality system

[
ẏ(t)

λ̇(t)

]
=

[
A −BR−1BT

−Q −AT

][
y(t)

λ(t)

]

y(t0) = y0

λ(tf ) = Πfy(tf )

(19)

and the control input is determined by solving an algebraic Ricatti equation [4] to yield

u∗(t) = −Ky(t). (20)

4.1.1 Numerical example – no external force

Active vibration control of the plate is illustrated by applying an external disturbance load to the plate from
tI = 0 sec to t0=0.45 sec. The external disturbance load is set to zero at t0 and the control input is applied.
The initial condition y0 is defined as the state of the system at t0.
Vibration attenuation is marginal when the Terfenol transducers are limited to small input fields. This

is illustrated in Figure 2(b) by plotting the plate displacement at the point [`x, `y]. The magenetic field-
magnetization response corresponding to the input control is illustrated in Figure 2(a).
When the control input is increased, the vibration control initially improves, but quickly degrades due to

the phase shift induced by the hysteresis at larger input fields, see Figure 3. The controlled response does not
go unstable, but the amplitude of vibration continues to increase until it reaches the uncontrolled response.

6



5.5 6 6.5 7 7.5
16

17

18

19

20

Magnetic Field (H) kA/m

M
ag

ne
tiz

at
io

n 
(M

) 
kA

/m

6 6.5 7 7.5
16

17

18

19

20

Magnetic Field (H) kA/m

M
ag

ne
tiz

at
io

n 
(M

) 
kA

/m

Top Actuator
Bottom Actuator

6.2 6.4 6.6 6.8
16

17

18

19

20

Magnetic Field (H) kA/m

M
ag

ne
tiz

at
io

n 
(M

) 
kA

/m

5.5 6 6.5 7 7.5
16

17

18

19

20

Magnetic Field (H) kA/m

M
ag

ne
tiz

at
io

n 
(M

) 
kA

/m
0 0.5 1 1.5 2 2.5

−25

−20

−15

−10

−5

0

5

10

15

20

25

Time (sec)

D
is

pl
ac

em
en

t (
m

m
)

(a) (b)

Figure 2: Performance of the linear feedback control law in the nonlinear model. The relationship between magnetic field
and magnetization is given in (a) for each actuator pair. The resulting plate displacement for the uncontrolled ( ) and
controlled response ( ) are given in (b).
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Figure 3: Linear feedback control law in the nonlinear model. The relationship between magnetic field and magnetization
is given in (a) for each actuator pair. In this simulation, Q and R was increased to increase the input field. The resulting
plate displacement for the uncontrolled ( ) and controlled response ( ) are given in (b).

4.2 Nonlinear control method

The nonlinear control method previously discussed by Smith [20] is applied to the Terfenol plate structure.
The nonlinear magnetostrictive material behavior contained within the input operator B(u) precludes decom-
position of the system matrices in terms of a fundamental matrix solution, therefore an efficient solution in
terms of a Riccati matrix is not possible. This issue is resolved by approximating first-order system using the
following relations,
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ż(t) = F (t, z)

E0z(t0) = [y0, 0]
T

Efz(tf ) = [0,Πfy(tf )]
T

(21)

where z = [y, λ]T and

F (t, z) =

[
Ay(t) + [B(u)](t)

−ATλ(t)−Qy(t)

]

E0 =

[
I 0

0 0

]
, Ef =

[
0 0

0 I

]
.

(22)

Here I denotes a 2Nω × 2Nω identity matrix where Nω denotes the number of basis functions employed in
the spatial approximation of the state variables given in Section 3.2.
The optimal control satisfies

u∗(t) = −R−1[BT (u∗)](t)λ(t) (23)

where the nonlinear operator B(u∗) is included in the optimal control input.
As previously noted in [20], the solutions to the system given by (22) can be approximated through a variety

of methods including finite differences and nonlinear multiple shooting [1]. To illustrate a finite difference
approach, a discretization of the time interval [t0, tf ] with a uniform mesh having stepsize ∆t and points
t0, t1, · · · , tN = tf is considered. The approximate values of z at these times are denoted by z0, · · · , zN . A
central difference approximation of the temporal derivative then yields the system

1

∆t
[zj+1 − zj ] =

1

2
[F (tj , zj) + F (tj+1, zj+1)]

E0z0 = [y0, 0]
T

EfzN = [0,Πfy(tf )]
T

(24)

for j = 0, · · · , N − 1.
The determination of a solution vector zh = [z0, · · · , zN ] to (24) can then be expressed as the problem of

finding zh which solves

F(zh) = 0 . (25)

A quasi-Newton iteration of the form zk+1
h = zk

h + ξk
h, where ξ

k
h solves

F ′(zk
h)ξ

k
h = −F(z

k
h), (26)

is used to approximate the solution to the nonlinear system given by (25). Direct solution of (26) is infeasible due
to the large number of basis functions and time increments required to resolve the solution over a reasonable
time interval. The structure of the Jacobian can be employed to reduce both memory and computational
requirements to the level of solving 4Nω × 4Nω systems. This is accomplished by expressing the Jacobian in
terms of an analytic LU decomposition (see [20] for details).
The minimum of (25) was obtained by solving the LU decomposition problem by iteration. Convergence

was obtained by varying certain system parameters. The weighting matrix Q was reduced and the magnetic
bias in the nonlinear input matrix B(u∗) was increased to the saturation value (Mr =MR). Once the solution
began to converge, the weighting matrix Q was increased and the magnetic bias was reduced to ensure self-
consistency with the constitutive law given by (2). These values were used for several additional iterations until
final convergence was achieved.

8



4.2.1 Numerical example

The use of nonlinear control is shown to significantly enhance the ability to dampen vibration in the plate
relative to the linear control design. In Figure 4, the same disturbance load is applied on the Terfenol plate
structure. When t0 = 0.45 sec, the disturbance is zero and control is instantaneously applied. By increasing
the penalty on the states through Q, the control input reaches moderate to high drive levels. Although this
creates nonlinearity and hysteresis in the Terfenol transducers similar to that shown in Figure 3(a), the nonlinear
control method provides reasonable compensation for this behavior.
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Figure 4: Nonlinear feedback control law for open loop control example. The relationship between magnetization and
magnetic field is given in (a). The resulting plate displacement for the uncontrolled ( ) and controlled response ( )
are given in (b).

5. Concluding remarks

A nonlinear control design was extended to plate structures using multiple nonlinear magnetostrictive tran-
ducers. It was illustrated that when the control input is limited to the linear region, marginal attenuation in
vibration is achieved. When the control input is increased, minor hysteresis introduces a phase lag between the
field input and the actuation response which cannot be compensated by the linear control method. The hystere-
sis and nonlinearity are compensated through the use of an open loop nonlinear control method. This approach
provides improved performance characteristics in attenuating vibration in the plate. Additional improvements
can be made by implementing an appropriate feedback law to increase robustness in operating uncertainty. This
issue is currently under investigation.
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